

INCISIONAL HERNIA

The fragility of randomised controlled trials on port site hernias in laparoscopic cholecystectomy

Tiffany CHEUNG, Asma AFZAL, Neil SMART Royal Devon and Exeter Hospital, Exeter, UK Royal Devon University Healthcare NHS Foundation Trust

Introduction

- Laparoscopic offers several benefits over open cholecystectomy, e.g. reduced risk of incisional hernia
- **Port site hernias** (PSH) are uncommon but potentially significant
- Evidence for PSH prevention methods is of limited quality
- We assessed the robustness of randomised controlled trials (RCTs) evaluating intra-operative technical factors influencing PSH development post-LC, using the fragility index or reverse fragility index

Methods

- 1. Systematic review per PRISMA
- PROSPERO registration (CRD42024504809)
- 3. Search: Medline, Embase, CENTRAL

(cholecystectomy) AND ("incisional hernia" OR "port site hernia" OR "trocar site hernia" OR "postoperative hernia")

- 4. Formal narrative synthesis of data
- 5. Risk-of-Bias 2 assessment
- 6. FI or RFI calculation

10 RCTs included

Minimum number of patients that would need a different outcome to: Fragility index (FI) = lose statistical significance

Reverse fragility index (RFI) = gain statistical significance

Results				*S = significant, NS = non-significant		
	Author Year	Intervention	Control	PSH incidence (I)	PSH incidence (O)	S or NS study* FI or RFI
Port insertion	Channa 2009	Veress needle	Hasson technique	0/60 (0.0%)	0/60 (0.0%)	Non-sig 6
	Lee 2016	Intra-umbilical	Infra-umbilical	0/64 (0.0%)	0/66 (0.0%)	Non-sig 6
Port size	Toktas 2019	15mm epigastric (extraction)	10mm epigastric (extraction)	0/100 (0.0%)	0/100 (0.0%)	Non-sig 6
Port for extraction	Kaya 2017	Epigastric	Umbilical	1/60 (1.7%)	0/60 (0.0%)	Non-sig 5
	Li 2018	Epigastric	Umbilical	4/81 (4.9%)	12/82 (14.6%)	Significant 0
Port closure (umbilical)	Calik 2008	Berci's needle	Suture	0/50 (0.0%)	0/50 (0.0%)	Non-sig 6
	Armañanzas 2014	Intra-perit PP ω-3 mesh	Non-absorb suture	2/45 (4.4%)	15/47 (31.9%)	Significant 5
	Colak 2022	Video-assisted	Standard	1/121 (0.8%)	8/119 (6.7%)	Significant 1
	Ferreres Serafini 2023	PDS + onlay synth mesh	PDS	(41.7%)	(28.5%)	Unable to calculate
	Ciscar 2024	PDS + onlay PP mesh	2/0 PDS	9/64 (14.1%)	9/52 (17.3%)	Non-sig 6

Conclusions

- None of the RCTs were robust, regardless of significant or non-significant primary outcome
- Current evidence on PSH prevention in LC is fragile and low-quality
- Higher quality RCTs on PSH prevention in LC are needed to guide best practice