

Incisional Hernia

Enhanced Prediction of Incisional Hernia in Liver Transplant Patients: A comparative Analysis of Logistic Regression and Machine Learning Models

Sam DHAENE¹, A. Ghazinoer¹, N. Rashidian¹, H. Eker¹, L. Abreu De Carvalho¹, F. Gryspeerdt¹, F. Berrevoet¹

¹Ghent University Hospital – Ghent (Belgium)

BACKGROUND

- Incisional hernia (IH) is a common complication after liver transplantation (LT).
- LT patients face **increased risk** due to large incisions, immunosuppression and specific comorbidities.
- IH significantly **impacts quality of life** and creates health/financial burdens.
- Accurate **IH risk prediction** is essential to guide preventive strategies and improve outcomes.

METHODES

Study Design:

Retrospective cohort (2010-2019)

• 308 LT patients

Outcome:

Analysis:

- 1. External validation of Penn Hernia Risk Calculator
- 2. Development of LT-specific logistic regression model
- 3. Comparison with 10 machine learning methods

Incisional hernia requiring repair (17.9% incidence)

RESULTS

External Validation

LT-specific revision

Machine Learning Models

MODELS	ROC-CURVE	PERFORMANCE METRICS							
Model (AUC) — Logistic Regression (0.776) — DA (0.775) — QDA (0.746) — SVM Inser (0.777) — SVM Polynomial (0.779) — Decision Tree (0.733) — Random Forest (0.778)		Model Logistic Regression LDA QDA SVM Linear SVM Polynomial Decision Tree Random Forest CRM	AUC (95%CI) 0.776 (0.702-0.850) 0.775 (0.702-0.848) 0.776 (0.750-0.812) 0.777 (0.705-0.849) 0.778 (0.705-0.849) 0.778 (0.712-0.847) 0.733 (0.641-0.829) 0.778 (0.712-0.843) 0.773 (0.712-0.843)	Sensitivity 0.807 0.840 0.753 0.800 0.857 0.803 0.697 0.803 0.757	Specificity 0.739 0.716 0.774 0.728 0.700 0.759 0.786 0.755 0.771	PPV 0.482 0.508 0.476 0.444 0.456 0.478 0.445 0.428 0.492	NPV 0.948 0.962 0.938 0.944 0.964 0.948 0.926 0.947 0.948	Brier score 0.127 0.129 0.153 0.130 0.127 0.134 0.143 0.129 0.140	O/E (95% CI) 1.016 (0.742-1.281) 1.003 (0.733-1.266) 0.333 (0.603-1.042) 0.943 (0.692-1.196) 0.982 (0.727-1.256) 0.331 (0.697-1.204) 1.009 (0.742-1.282) 0.997 (0.746-1.289) 0.997 (0.746-1.289)
GBM (0.773) XGBoost (0.781)		XGBoost	0.781 (0.702-0.861)	0.823	0.778	0.491	0.955	0.142	2.266 (1.652-2.855)

CONCLUSION

- **Penn models** do not adequately account for LT-specific risk factors, leading to poor calibration and discrimination.
- **Revised logistic regression model** offers the best overall balance between sensitivity, specificity, and calibration.
- Machine learning models, though promising, require refinement for clinical utility.