

Biomechanics

Development of a preclinical porcine model to evaluate hernia mesh migration, folding and dislocation

Arthur Jourdan, Anthony Végleur, Amandine Radlovic, Ludovic Boure, Anicet Le Ruyet Medtronic, Core surgical Innovations, Trévoux, France

Context

New mesh development

How can we ensure that new implant designs do not promote failure mechanisms?

- Development of a porcine model for the evaluation of mesh performances
 - Combination of in vivo and ex vivo testing Investigation of 3 failure mechanisms:

Comparison of 3 non-resorbable mesh technologies:

- Lightweight flatsheet (LWF) Optilene® Mesh LP 39 g/m²
- 2. Heavyweight flatsheeet (HWF) - Bard® mesh - 99 g/m
 - Heavyweight self-fixating mesh (SFM) ProGrip™ laparoscopic self-fixating mesh 147 g/m²

Phase 1: in vivo testing

Migration and folding and bunching evaluation, one-week post-surgery

Phase 2: ex vivo testing Dislocation dynamic bench testing

Explanted abdominal wall samples

250 mmHg cyclic pressure impacts until mesh dislocation^{1,2,3}

RESULTS LWF: 66% meshes dislocated (n=8/12) before reaching 1000 cycles HWF: 25 % meshes dislocated (n=2/8) SFM: 0 dislocation (n=0/8)Ranking was aligned with in vivo results

SFM provided better protection of the repair

Mechanisms of failure

- Mesh creeping³
- Defect opening
- Insufficient overlap
- Mesh dislocation 1 case of LWF mesh rupture

